MENU

Chapter 2 Polynomials Ex 2.5 Solutions

Question - 1 : -

Use suitable identities to find the following products:

(i) (x+4)(x +10) 

(ii) (x+8)(x –10)     

(iii) (3x+4)(3x–5)

(iv) (y_2+3/2)(y_2-3/2)


Answer - 1 : -

(i)(x+4)(x +10) 

Using the identity, (x+a)(x+b) = x 2+(a+b)x+ab

[Here, a = 4 and b = 10]

We get,

(x+4)(x+10) = x2+(4+10)x+(4×10)

= x2+14x+40


(ii)(x+8)(x –10)     

Using the identity, (x+a)(x+b) = x 2+(a+b)x+ab

[Here, a = 8 and b = −10]

We get,

(x+8)(x−10) = x2+(8+(−10))x+(8×(−10))

= x2+(8−10)x–80

= x2−2x−80


(iii) (3x+4)(3x–5)

Using the identity, (x+a)(x+b) = x 2+(a+b)x+ab

[Here, x = 3x, a = 4 and b= −5]

We get,

(3x+4)(3x−5) = (3x)2+[4+(−5)]3x+4×(−5)

= 9x2+3x(4–5)–20

= 9x2–3x–20


(iv) (y2+3/2)(y2-3/2)

Using the identity, (x+y)(x–y) = x2–y 2

[Here, x = y2andy = 3/2]

We get,

(y2+3/2)(y2–3/2) = (y2)2–(3/2)2

= y4–9/4

Question - 2 : -

Evaluate the following products without multiplying directly:

(i) 103×107

(ii) 95×96  

(iii) 104×96


Answer - 2 : -

(i) 103×107

103×107= (100+3)×(100+7)

Using identity, [(x+a)(x+b) = x2+(a+b)x+ab

Here, x = 100

a = 3

b = 7

We get, 103×107 = (100+3)×(100+7)

= (100)2+(3+7)100+(3×7))

= 10000+1000+21

= 11021


(ii) 95×96  

95×96 = (100-5)×(100-4)

Using identity, [(x-a)(x-b) = x2-(a+b)x+ab

Here, x = 100

a = -5

b = -4

We get, 95×96 = (100-5)×(100-4)

= (100)2+100(-5+(-4))+(-5×-4)

= 10000-900+20

= 9120


(iii) 104×96

104×96 = (100+4)×(100–4)

Using identity, [(a+b)(a-b)= a2-b2]

Here, a = 100

b = 4

We get, 104×96 = (100+4)×(100–4)

= (100)2–(4)2

= 10000–16

=9984

Question - 3 : -

Factorize the following using appropriate identities:

(i) 9x_2+6xy+y_2

(ii) 4y_2−4y+1

(iii)  x_2–y_2/100


_

Answer - 3 : -

(i) 9x2+6xy+y2

9x2+6xy+y= (3x)2+(2×3x×y)+y2

Using identity, x2+2xy+y= (x+y)2

Here, x = 3x

y = y

9x2+6xy+y= (3x)2+(2×3x×y)+y2

= (3x+y)2

= (3x+y)(3x+y)


(ii) 4y2−4y+1

4y2−4y+1 = (2y)2–(2×2y×1)+1

Using identity, x2 – 2xy + y=(x – y)2

Here, x = 2y

y = 1

4y2−4y+1 = (2y)2–(2×2y×1)+12

= (2y–1)2

= (2y–1)(2y–1)


(iii)  x2–y2/100

x2–y2/100 = x2–(y/10)2

Using identity, x2-y= (x-y)(x+y)

Here, x = x

y = y/10

x2–y2/100 = x2–(y/10)2

= (x–y/10)(x+y/10)

Question - 4 : -

Expand each of the following, using suitable identities:

(i) (x+2y+4z)_2

(ii) (2x−y+z)_2

(iii) (−2x+3y+2z)_2

(iv) (3a –7b–c)_2

(v) (–2x+5y–3z)_2

(vi) ((1/4)a-(1/2)b +1)_2

Answer - 4 : -

(i) (x+2y+4z)2

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = x

y = 2y

z = 4z

(x+2y+4z)= x2+(2y)2+(4z)2+(2×x×2y)+(2×2y×4z)+(2×4z×x)

= x2+4y2+16z2+4xy+16yz+8xz


(ii) (2x−y+z)2 

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = 2x

y = −y

z = z

(2x−y+z)= (2x)2+(−y)2+z2+(2×2x×−y)+(2×−y×z)+(2×z×2x)

= 4x2+y2+z2–4xy–2yz+4xz


(iii) (−2x+3y+2z)2

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = −2x

y = 3y

z = 2z

(−2x+3y+2z)= (−2x)2+(3y)2+(2z)2+(2×−2x×3y)+(2×3y×2z)+(2×2z×−2x)

= 4x2+9y2+4z2–12xy+12yz–8xz


(iv) (3a –7b–c)2

Using identity (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = 3a

y = – 7b

z = – c

(3a –7b– c)= (3a)2+(– 7b)2+(–c)2+(2×3a ×– 7b)+(2×– 7b ×– c)+(2×– c ×3a)

= 9a2 + 49b+ c2–42ab+14bc–6ca


(v) (–2x+5y–3z)2

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = –2x

y = 5y

z = – 3z

(–2x+5y–3z)= (–2x)2+(5y)2+(–3z)2+(2×–2x× 5y)+(2× 5y×– 3z)+(2×–3z ×–2x)

= 4x2+25y+9z2–20xy–30yz+12zx


(vi)((1/4)a-(1/2)b+1)2

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = (1/4)a

y = (-1/2)b

z = 1

Question - 5 : -

Factorize:

(i) 4x2+9y2+16z2+12xy–24yz–16xz

(ii ) 2x2+y2+8z2–2√2xy+4√2yz–8xz

Answer - 5 : -

(i) 4x2+9y2+16z2+12xy–24yz–16xz

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

We can say that, x2+y2+z2+2xy+2yz+2zx= (x+y+z)2

4x2+9y2+16z2+12xy–24yz–16xz =(2x)2+(3y)2+(−4z)2+(2×2x×3y)+(2×3y×−4z)+(2×−4z×2x)

= (2x+3y–4z)2

= (2x+3y–4z)(2x+3y–4z)


(ii) 2x2+y2+8z2–2√2xy+4√2yz–8xz

Using identity, (x +y+z)2 = x2+y2+z2+2xy+2yz+2zx

We can say that, x2+y2+z2+2xy+2yz+2zx= (x+y+z)2

2x2+y2+8z2–2√2xy+4√2yz–8xz

= (-√2x)2+(y)2+(2√2z)2+(2×-√2x×y)+(2×y×2√2z)+(2×2√2×−√2x)

= (−√2x+y+2√2z)2

=(−√2x+y+2√2z)(−√2x+y+2√2z)

Question - 6 : -

Write the followingcubes in expanded form:

(i) (2x+1)3                          (ii) (2a−3b)3

(iii) ((3/2)x+1)3                (iv) (x−(2/3)y)3

Answer - 6 : -

(i) (2x+1)3

Using identity,(x+y)3 = x3+y3+3xy(x+y)

(2x+1)3= (2x)3+13+(3×2x×1)(2x+1)

= 8x3+1+6x(2x+1)

= 8x3+12x2+6x+1


(ii) (2a−3b)3

Using identity,(x–y)3 = x3–y3–3xy(x–y)

(2a−3b)= (2a)3−(3b)3–(3×2a×3b)(2a–3b)

= 8a3–27b3–18ab(2a–3b)

= 8a3–27b3–36a2b+54ab2


(iii) ((3/2)x+1)3

Using identity,(x+y)3 = x3+y3+3xy(x+y)

((3/2)x+1)3=((3/2)x)3+13+(3×(3/2)x×1)((3/2)x+1)


(iv) (x−(2/3)y)3

Using identity, (x –y)3 = x3–y3–3xy(x–y)

Question - 7 : -

Evaluate thefollowing using suitable identities: 

(i) (99)3

(ii) (102)3

(iii) (998)3

Answer - 7 : -

(i) (99)3

We can write 99 as 100–1

Using identity, (x –y)3 = x3–y3–3xy(x–y)

(99)= (100–1)3

= (100)3–13–(3×100×1)(100–1)

= 1000000 –1–300(100 – 1)

= 1000000–1–30000+300

= 970299


(ii) (102)3

We can write 102 as 100+2

Using identity,(x+y)3 = x3+y3+3xy(x+y)

(100+2)=(100)3+23+(3×100×2)(100+2)

= 1000000 + 8 + 600(100 + 2)

= 1000000 + 8 + 60000 + 1200

= 1061208


(iii) (998)3

We can write 99 as 1000–2

Using identity,(x–y)3 = x3–y3–3xy(x–y)

(998)=(1000–2)3

=(1000)3–23–(3×1000×2)(1000–2)

= 1000000000–8–6000(1000– 2)

= 1000000000–8- 6000000+12000

= 994011992

Question - 8 : -

Factorise each ofthe following:

(i) 8a3+b3+12a2b+6ab2

(ii) 8a3–b3–12a2b+6ab2

(iii) 27–125a3–135a+225a2   

(iv) 64a3–27b3–144a2b+108ab2

(v) 27p3–(1/216)−(9/2)p2+(1/4)p

Answer - 8 : -

(i) 8a3+b3+12a2b+6ab2

The expression, 8a3+b3+12a2b+6ab2 canbe written as (2a)3+b3+3(2a)2b+3(2a)(b)2

8a3+b3+12a2b+6ab=(2a)3+b3+3(2a)2b+3(2a)(b)2

= (2a+b)3

= (2a+b)(2a+b)(2a+b)

Here, the identity, (x +y)3 = x3+y3+3xy(x+y)is used.

 

(ii) 8a3–b3–12a2b+6ab2

The expression, 8a3–b3−12a2b+6ab2 canbe written as (2a)3–b3–3(2a)2b+3(2a)(b)2

8a3–b3−12a2b+6ab=(2a)3–b3–3(2a)2b+3(2a)(b)2

= (2a–b)3

= (2a–b)(2a–b)(2a–b)

Here, the identity,(x–y)3 = x3–y3–3xy(x–y)is used.

 

(iii) 27–125a3–135a+225a2 

The expression, 27–125a3–135a +225a2 canbe written as 33–(5a)3–3(3)2(5a)+3(3)(5a)2

27–125a3–135a+225a=
33–(5a)3–3(3)2(5a)+3(3)(5a)2

= (3–5a)3

= (3–5a)(3–5a)(3–5a)

Here, the identity, (x–y)3 = x3–y3-3xy(x–y)is used.


(iv) 64a3–27b3–144a2b+108ab2

The expression, 64a3–27b3–144a2b+108ab2canbe written as (4a)3–(3b)3–3(4a)2(3b)+3(4a)(3b)2

64a3–27b3–144a2b+108ab2=
(4a)3–(3b)3–3(4a)2(3b)+3(4a)(3b)2

=(4a–3b)3

=(4a–3b)(4a–3b)(4a–3b)

Here, the identity, (x – y)3 = x3 –y3 – 3xy(x – y) is used.


(v) 7p3–(1/216)−(9/2) p2+(1/4)p

The expression, 27p3–(1/216)−(9/2) p2+(1/4)p

can be written as (3p)3–(1/6)3–3(3p)2(1/6)+3(3p)(1/6)2

27p3–(1/216)−(9/2) p2+(1/4)p =
(3p)3–(1/6)3–3(3p)2(1/6)+3(3p)(1/6)2

= (3p–16)3

= (3p–16)(3p–16)(3p–16)

Question - 9 : -

Verify:

(i) x3+y=(x+y)(x2–xy+y2)

(ii) x3–y=(x–y)(x2+xy+y2)

Answer - 9 : -

(i) x3+y=(x+y)(x2–xy+y2)

We know that, (x+y)3 = x3+y3+3xy(x+y)

x3+y=(x+y)3–3xy(x+y)

x3+y=(x+y)[(x+y)2–3xy]

Taking (x+y) common x3+y= (x+y)[(x2+y2+2xy)–3xy]

x3+y=(x+y)(x2+y2–xy)


(ii) x3–y=(x–y)(x2+xy+y2

We know that,(x–y)3 = x3–y3–3xy(x–y)

x3−y=(x–y)3+3xy(x–y)

x3−y=(x–y)[(x–y)2+3xy]

Taking (x+y) common x3−y= (x–y)[(x2+y2–2xy)+3xy]

x3+y=(x–y)(x2+y2+xy)

Question - 10 : -

Factorize each ofthe following:

(i) 27y3+125z3

(ii) 64m3–343n3

Answer - 10 : -

(i) 27y3+125z3

The expression, 27y3+125zcan bewritten as (3y)3+(5z)3

27y3+125z= (3y)3+(5z)3

We know that, x3+y= (x+y)(x2–xy+y2)

27y3+125z= (3y)3+(5z)3

= (3y+5z)[(3y)2–(3y)(5z)+(5z)2]

= (3y+5z)(9y2–15yz+25z2)


(ii) 64m3–343n3

The expression, 64m3–343n3can be writtenas (4m)3–(7n)3

64m3–343n=
(4m)3–(7n)3

We know that, x3–y= (x–y)(x2+xy+y2)

64m3–343n= (4m)3–(7n)3

= (4m-7n)[(4m)2+(4m)(7n)+(7n)2]

= (4m-7n)(16m2+28mn+49n2)

Free - Previous Years Question Papers
×