MENU

Chapter 13 Nuclei Solutions

Question - 1 : - (a) Two stable isotopes of lithium and have respective abundances of7.5% and 92.5%. These isotopes have masses 6.01512 u and 7.01600 u,respectively. Find the atomic mass of lithium.
(b)Boron has two stable isotopes, and. Their respective masses are 10.01294 u and 11.00931u, and the atomic mass of boron is 10.811 u. Find the abundances of  and 

Answer - 1 : - (a) Massof lithium isotope m1 =6.01512 u
Massof lithium isotope m2 =7.01600 u
Abundanceof η1= 7.5%
Abundanceof η2=92.5%

The atomic mass of lithium atomis given as:

(b) Massof boron isotope m1 =10.01294 u

Massof boron isotope m2 =11.00931 u

Abundance of η1 = x%

Abundanceof η2= (100− x)%

Atomic mass of boron, m =10.811 u

The atomic mass of boronatom is given as:

And 100 − x =80.11%

Hence, theabundance of  is 19.89% and that of is 80.11%.


Question - 2 : - The three stable isotopes of neon: and have respective abundances of90.51%, 0.27% and 9.22%. The atomic masses of the three isotopes are 19.99 u,20.99 u and 21.99 u, respectively. Obtain the average atomic mass of neon.

Answer - 2 : - Atomic mass of m1=19.99 u
Abundance of η=90.51%
Atomicmass of , m=20.99 u
Abundanceof η=0.27%
Atomicmass of m=21.99 u
Abundanceof η3 =9.22%

The average atomic mass ofneon is given as:


Question - 3 : - Obtain the binding energy (in MeV) of anitrogen nucleus, given =14.00307 u

Answer - 3 : - Atomic mass of nitrogenm = 14.00307 u
A nucleusof nitrogen  contains 7 protons and 7neutrons.

Hence, the mass defect ofthis nucleus, Δ= 7mH + 7mn − m

Where,

Mass of a proton, mH =1.007825 u

Mass of a neutron, mn=1.008665 u

Δm =7 × 1.007825 + 7 × 1.008665 − 14.00307

= 7.054775 + 7.06055 − 14.00307

= 0.11236 u

But 1 u = 931.5 MeV/c2

Δ=0.11236 × 931.5 MeV/c2

Hence, the binding energy ofthe nucleus is given as:

Eb = Δmc2

Where,

c =Speed of light

E=0.11236 × 931.5 

= 104.66334 MeV

Hence, the binding energy of anitrogen nucleus is 104.66334 MeV.

Question - 4 : - Obtain the binding energy of the nuclei  and in units of MeV from thefollowing data: = 55.934939 u = 208.980388 u

Answer - 4 : - Atomic mass of m1 =55.934939 u

 nucleus has 26 protons and(56 − 26) = 30 neutrons

Hence, the mass defect ofthe nucleus, Δ= 26 × mH + 30 × mn − m1

Where,

Mass of a proton, mH =1.007825 u

Mass of a neutron, mn =1.008665 u

Δ=26 × 1.007825 + 30 × 1.008665 − 55.934939

= 26.20345 + 30.25995 − 55.934939

= 0.528461 u

But 1 u = 931.5 MeV/c2

Δ=0.528461 × 931.5 MeV/c2

The binding energy of thisnucleus is given as:

Eb1 = Δmc2

Where,

c =Speed of light

Eb1 =0.528461 × 931.5 

= 492.26 MeV

Averagebinding energy per nucleon 
Atomic mass ofm2 =208.980388 u
 nucleus has 83 protons and(209 − 83) 126 neutrons.

Hence, the mass defect ofthis nucleus is given as:

Δm' = 83 × mH +126 × mn − m2

Where,

Mass of a proton, mH =1.007825 u

Mass of a neutron, mn =1.008665 u

Δm'= 83 × 1.007825 + 126 × 1.008665 − 208.980388

= 83.649475 + 127.091790 −208.980388

= 1.760877 u

But 1 u = 931.5 MeV/c2

Δm'= 1.760877 × 931.5 MeV/c2

Hence, the binding energy of thisnucleus is given as:

Eb2 = Δm'c2

=1.760877 × 931.5

= 1640.26 MeV

Averagebindingenergy per nucleon = 

Question - 5 : - A given coin has a mass of 3.0 g. Calculate thenuclear energy that would be required to separate all the neutrons and protonsfrom each other. For simplicity assume that the coin is entirely made of atoms (of mass 62.92960 u).

Answer - 5 : -

Mass of a copper coin, m’= 3 g

Atomicmass of atom, m =62.92960 u
Thetotal number of atoms in the coin

Where,

NA = Avogadro’snumber = 6.023 × 1023 atoms /g

Mass number = 63 g

nucleus has 29 protons and (63 −29) 34 neutrons

Massdefect of this nucleus, Δm' = 29 × mH + 34× mn − m

Where,

Mass of a proton, mH =1.007825 u

Mass of a neutron, mn =1.008665 u

Δm'= 29 × 1.007825 + 34 × 1.008665 − 62.9296

= 0.591935 u

Mass defect of all theatoms present in the coin, Δm = 0.591935 × 2.868 × 1022

= 1.69766958 × 1022 u

But 1 u = 931.5 MeV/c2

Δ=1.69766958 × 1022 × 931.5 MeV/c2

Hence, the binding energy of thenuclei of the coin is given as:

Eb= Δmc2

=1.69766958 × 1022 × 931.5 

= 1.581 × 1025 MeV

But 1 MeV = 1.6 × 10−13 J

Eb = 1.581 ×1025 × 1.6 × 10−13

= 2.5296 × 1012 J

This much energy is requiredto separate all the neutrons and protons from the given coin.

Question - 6 : -

Write nuclear reaction equationsfor

(i) α-decayof  (ii) α-decayof 

(iii) β-decayof  (iv) β-decayof 

(v) β+-decayof  (vi) β+-decayof 

(vii) Electroncapture of 

Answer - 6 : - α is a nucleus of helium and β is anelectron (e− for β and e+ for β+).In every α-decay, there is a loss of 2 protons and 4 neutrons. Inevery β+-decay, there is a loss of 1 proton and aneutrino is emitted from the nucleus. In every β-decay,there is a gain of 1 proton and an antineutrino is emitted from the nucleus.

For the given cases, thevarious nuclear reactions can be written as:


Question - 7 : -

A radioactive isotope has ahalf-life of years. How long will it take the activity toreduce to a) 3.125%, b) 1% of its original value?

Answer - 7 : -

Half-life of the radioactiveisotope = T years

Original amount of theradioactive isotope = N0

(a) Afterdecay, the amount of the radioactive isotope = N

It is given that only 3.125%of Nremains after decay. Hence, we can write:

Where,

λ = Decay constant

t =Time

Hence, the isotope will takeabout 5T years to reduce to 3.125% of its original value.

(b) Afterdecay, the amount of the radioactive isotope = N

It is given that only 1% of Nremainsafter decay. Hence, we can write:

Since, λ =0.693/T

Hence, the isotope will takeabout 6.645T years to reduce to 1% of its original value.

Question - 8 : - The normal activity of living carbon-containing matteris found to be about 15 decays per minute for every gram of carbon. Thisactivity arises from the small proportion of radioactive  present with the stable carbon isotope . When the organism is dead, its interactionwith the atmosphere (which maintains the above equilibrium activity) ceases andits activity begins to drop. From the known half-life (5730 years) of, and the measured activity, the age of the specimencan be approximately estimated. This is the principle of dating used in archaeology.Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minuteper gram of carbon. Estimate the approximate age of the Indus-Valleycivilisation.

Answer - 8 : -

Decay rate of livingcarbon-containing matter, R = 15 decay/min

Let N be the number ofradioactive atoms present in a normal carbon- containing matter.

Halflife of= 5730 years

The decay rate of the specimenobtained from the Mohenjodaro site:

R' =9 decays/min

Let N' be the number ofradioactive atoms present in the specimen during the Mohenjodaro period.

Therefore, we can relate thedecay constant, λand time, t as:

Hence, the approximate age of theIndus-Valley civilisation is 4223.5 years.

Question - 9 : - Obtain the amount of necessary to provide a radioactive source of 8.0 mCistrength. The half-life of is 5.3 years.

Answer - 9 : -

The strength of the radioactivesource is given as:

Where,

N =Required number of atoms

Half-lifeof = 5.3 years

= 5.3 × 365 × 24 × 60 × 60

= 1.67 × 108 s

For decay constant λ,we have the rate of decay as:

Where, λ 

ForMass of 6.023 × 1023 (Avogadro’snumber) atoms = 60 g

Mass of atoms 
Hence, the amount of  necessary for the purposeis 7.106 × 10−6 g.

Question - 10 : - The half-life of is 28 years. What is thedisintegration rate of 15 mg of this isotope?

Answer - 10 : - Half life of = 28 years

= 28 × 365 × 24 × 60 × 60

= 8.83 × 108 s

Mass of the isotope, m =15 mg

90g of atom contains 6.023 × 1023 (Avogadro’snumber) atoms.
Therefore, 15mg of  contains:

Rate of disintegration, 

Where,

λ =Decay constant 

Hence, the disintegration rate of15 mg of the given isotope is 7.878 × 1010 atoms/s.

Free - Previous Years Question Papers
Any questions? Ask us!
×