Question -
Answer -
The dimensions of the circle are
Diameter = 40 cm
Radius = 40/2 = 20 cm
Consider AB be as the chord of the circle i.e. length = 20 cm
In ΔOAB,
Radius of circle = OA = OB = 20 cm
Similarly AB = 20 cm
Hence, ΔOAB is an equilateral triangle.
θ = 60° = π/3 radian
In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre
We get θ = 1/r
Therefore, the length of the minor arc of the chord is 20π/3 cm.