MENU
Question -

(sec x sec y + tan x tan y)2 – (sec x tan y + tan x sec y)2 = 1



Answer -

Let us consider LHS:

(sec x sec y + tan x tan y)2 – (sec xtan y + tan x sec y)2

Expanding the above equation we get,

[(sec x secy)2 + (tan x tan y)2 + 2 (sec x sec y) (tan xtan y)] – [(sec x tan y)2 + (tan x sec y)2 + 2(sec x tan y) (tan x sec y)] [secx sec2 y +tanx tan2 y + 2 (sec x sec y) (tan x tan y)]– [secx tan2 y + tanx sec2 y+ 2 (secx tan2 y) (tan x sec y)]

secx sec2 y – secxtan2 y + tanx tan2 y – tanxsec2 y

secx (sec2 y – tan2 y)+ tanx (tan2 y – sec2 y)

secx (sec2 y – tan2 y)– tanx (sec2 y – tan2 y)

We know, secx – tanx= 1.

secx × 1 – tanx ×1

secx – tanx

1 = RHS

LHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×